Deterministic Polynomial-Time Approximation Algorithms for Partition Functions and Graph Polynomials
نویسندگان
چکیده
In this paper we give a deterministic polynomial-time approximation algorithm for computing complex-valued evaluations of the Tutte polynomial and the independence polynomial on bounded degree graphs, as well for computing partition functions of complex-valued spin and edge-coloring models on bounded degree graphs. Our work builds on a recent line of work initiated by Barvinok [2, 3, 4, 5], which provides a new algorithmic approach besides the existing correlation decay method for these types of problems.
منابع مشابه
Zero-free regions of partition functions with applications to algorithms and graph limits
Based on a technique of Barvinok [3, 4, 5] and Barvinok and Soberón [6, 7] we identify a class of edge-coloring models whose partition functions do not evaluate to zero on bounded degree graphs. Subsequently we give a quasi-polynomial time approximation scheme for computing these partition functions. As another application we show that the normalised partition functions of these models are cont...
متن کاملBoolean matrices with prescribed row/column sums and stable homogeneous polynomials: Combinatorial and algorithmic applications
We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorithmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with boolean matrices with prescribed row and column sums within simply exponential multiplicative factor. This...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملGraph polynomials and approximation of partition functions with Loopy Belief Propagation
The Bethe approximation, or loopy belief propagation algorithm, is a successful method for approximating partition functions of probabilistic models associated with graphs. Chertkov and Chernyak derived an interesting formula called “Loop Series Expansion”, which is an expansion of the partition function. The main term of the series is the Bethe approximation while the other terms are labeled b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 61 شماره
صفحات -
تاریخ انتشار 2017